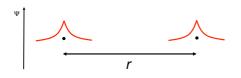
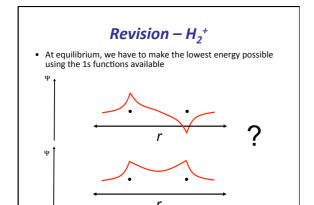
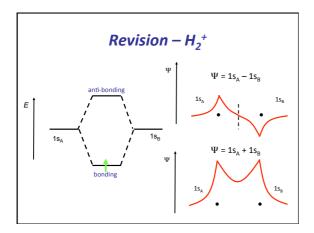
Chemistry 2

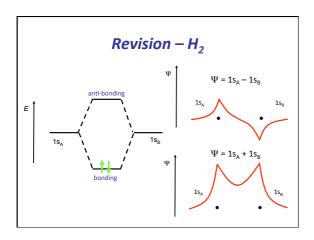
Lecture 1 Quantum Mechanics in Chemistry

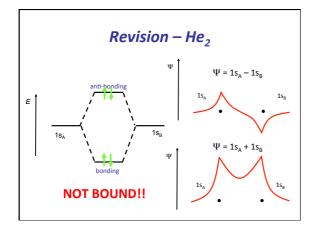
Your lecturers




12pm


Room 543A


Revision – H_2^+


- Near each nucleus, electron should behave as a 1s electron.
- At dissociation, 1s orbital will be exact solution at each nucleus

2nd	row	homonucl	lear diatomi	CS

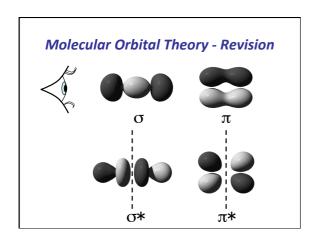
• Now what do we do? So many orbitals!

2p	 				2p
2s					2s

1s —— 1s

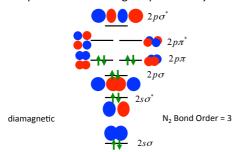
Interacting orbitals

Orbitals can interact and combine to make new approximate solutions to the Schrödinger equation. There are two considerations:


Orbitals interact inversely proportionally to their energy difference.

Orbitals of the same energy interact completely, yielding completely mixed linear combinations. In quantum mechanics, energy and frequency are related (*E=hv*). So, energy matching is equivalent to the phenomenon of resonance.

2.The extent of orbital mixing is given by the $resonance\ integral\ \beta.$ We will show how beta is calculated in a later lecture.



(First year) MO diagram
Orbitals interact <i>most</i> with the corresponding orbital on the other atom to make perfectly mixed linear combinations. (we ignore core).
2p
25 25

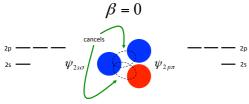
Molecular Orbital Theory - Revision

• Can predict bond strengths qualitatively

Interacting orbitals

1. The extent of orbital mixing is given by the integral

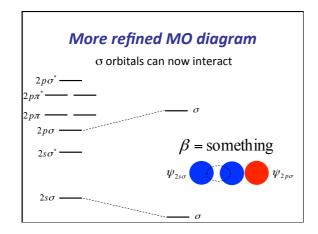
$$\beta$$
 = something

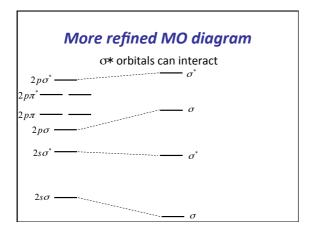

2p ————	_		— 2р
2s —	$\psi_{2s\sigma}$	$\psi_{2p\sigma}$	2s

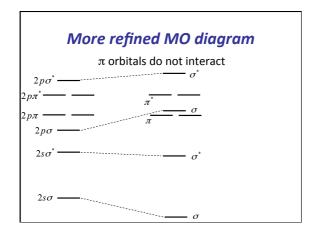
The 2s orbital on one atom *can* interact with the 2p from the other atom, but since they have different energies this is a smaller interaction than the 2s-2s interaction. We will deal with this later.

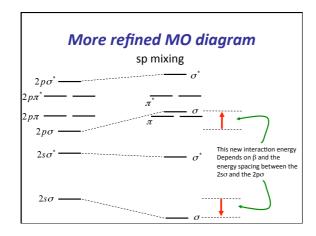
1s —	_	— 1s

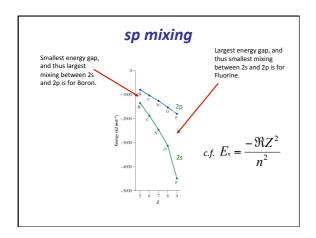
Interacting orbitals

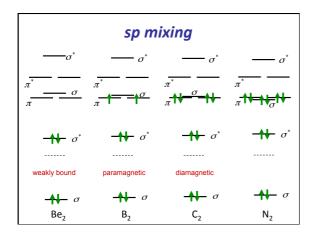

1. The extent of orbital mixing is given by the integral




There is no net interaction between these orbitals.


The positive-positive term is cancelled by the positive-negative term


1s	_	 _	1s



Learning outcomes

- •Use the principle that the mixing between orbitals depends on the energy difference, and the resonance integral, $\beta.$
- •Apply the separation of σ and π bonding to describe electronic structure in simple organic molecules.
- \bullet Rationalize differences in orbital energy levels of diatomic molecules in terms of s-p mixing.

Next lecture

Particle in a box approximation
 solving the Schrödinger equation.

Week 10 tutorials

Wavefunctions and the Schrödinger equation.

Practice Questions

- 1. Why is s-p mixing more important in Li_2 than in F_2 ?
- 2. How many core, σ -bonding, and π -electrons are there in
 - a) acetylene
 - b) ethylene
 - c) benzene
 - d) buckminsterfullerene

Check that your **total** number of electrons agrees with what is expected (6 per carbon, 1 per hydrogen).